- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chênevert, Denis (1)
-
Ellis, Stephen (1)
-
Flanagan, Tara D. (1)
-
Fukami, Tadashi (1)
-
Hannah, Thomas H. (1)
-
Kraft, Reuben H. (1)
-
Martin, Valerie (1)
-
Martin, Valerie A. (1)
-
Martin, Valerie N. (1)
-
Schaeffer, Robert N. (1)
-
Vogus, Timothy J. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Martin, Valerie A.; Kraft, Reuben H.; Hannah, Thomas H.; Ellis, Stephen (, Advanced Modeling and Simulation in Engineering Sciences)Abstract The embedded finite element technique provides a unique approach for modeling of fiber-reinforced composites. Meshing fibers as distinct bundles represented by truss elements embedded in a matrix material mesh allows for the assignment of more specific material properties for each component rather than homogenization of all of the properties. However, the implementations of the embedded element technique available in commercial software do not replace the material of the matrix elements with the material of the embedded elements. This causes a redundancy in the volume calculation of the overlapping meshes leading to artificially increased stiffness and mass. This paper investigates the consequences in the energy calculations of an explicit dynamic model due to this redundancy. A method for the correction of the edundancy within a finite element code is suggested which removes extra energy and is shown to be effective at correcting the energy calculations for large amounts of redundant volume.more » « less
-
Martin, Valerie N.; Schaeffer, Robert N.; Fukami, Tadashi (, Philosophical Transactions of the Royal Society B: Biological Sciences)Floral nectar is prone to colonization by nectar-adapted yeasts and bacteria via air-, rain-, and animal-mediated dispersal. Upon colonization, microbes can modify nectar chemical constituents that are plant-provisioned or impart their own through secretion of metabolic by-products or antibiotics into the nectar environment. Such modifications can have consequences for pollinator perception of nectar quality, as microbial metabolism can leave a distinct imprint on olfactory and gustatory cues that inform foraging decisions. Furthermore, direct interactions between pollinators and nectar microbes, as well as consumption of modified nectar, have the potential to affect pollinator health both positively and negatively. Here, we discuss and integrate recent findings from research on plant–microbe–pollinator interactions and their consequences for pollinator health. We then explore future avenues of research that could shed light on the myriad ways in which nectar microbes can affect pollinator health, including the taxonomic diversity of vertebrate and invertebrate pollinators that rely on this reward. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’.more » « less
An official website of the United States government
